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Abstract. We have found the eigenvalues of the transfer matrices for the 1D Hubbard model
and for the coupled XY model with a twisted boundary condition by using the analytic Bethe
ansatz method. Under a particular condition the two models have the same Bethe ansatz
equations. We have also proved that the periodic 1D Hubbard model is exactly equal to the
coupled XY model with a non-trivial twisted boundary condition at the level of Hamiltonians
and transfer matrices.

1. Introduction

The 1D Hubbard model (the Hubbard model) is one of the significant exactly solvable
models in condensed matter physics. Lieb and Wu [1] succeeded in diagonalizing the
Hamiltonian in the frame of the coordinate Bethe ansatz. However, the integrability of the
Hubbard model was recently set up by Shastry [2, 3], Olmedilla and co-workers [4–6] from
the viewpoint of the quantum inverse scattering method (QISM). The Yang–Baxter equation
for the relatedR-matrix was proved in [7]. In [2, 3], Shastry found the Yang–Baxter relation
and constructed the transfer matrix of the coupledXY model which is equal to the Hubbard
model with the help of the Jordan–Wigner transformation. The commutative family with
one free parameter ensures the integrability of the system. Using a different approach,
Olmedilla and co-workers [4–6], starting from the super-L-operator of the Hubbard model,
solved the super-Yang–Baxter (SYB) relation and found the invertibleR-matrix, which is
the same as that given by Shastry [8] up to a scalar function. In both cases [3, 5], the
Hamiltonian can be derived from the transfer matrix under a periodic boundary condition.

The basis of the quantum inverse scattering method is the Yang–Baxter relation. The
latter is closely related to the quantum group and the Yangian. This technique provides
a systematic method for dealing with integrable 1D quantum systems and 2D solvable
statistical mechanical models. It is known that most integrable systems can be handled
in the frame of the algebraic Bethe ansatz (or analytic Bethe ansatz) method. However,
up to now there has been no report about the diagonalization of the transfer matrix for
the Hubbard model in the QISM approach. Thus, it is important to find the solution
of the Hubbard model by using QISM. In [8], Shastry conjectured the eigenvalue of the
transfer matrix of the coupledXY model based upon the coordinate Bethe ansatz method.
Comparing the Bethe ansatz equations given by Lieb and Wu [1] and by Shastry [8], an
extra factor appears and it shows some difference between the two models. Furthermore, an

† E-mail: yue@sofia.phys.ocha.ac.jp

0305-4470/97/030849+17$19.50c© 1997 IOP Publishing Ltd 849



850 R Yue and T Deguchi

exact calculation of the eigenvalues of the conserved quantities of the 1D Hubbard model
has not yet been given. We recall that existence of infinite number of conserved quantities
is fundamental to the integrability of the 1D Hubbard model [2, 3, 6].

The motivation behind this paper is to find the eigenvalues of the transfer matrices
related to the Hubbard model and the coupledXY model with a twisted boundary condition
by a version of analytic Bethe ansatz method (ABA). The systematic derivation of the
eigenvalues of the transfer matrices provides an exact method for calculating the eigenvalues
of the conserved quantities. We also discuss the difference between the coupledXY and
the Hubbard models. The extra factor originates from the boundary condition. In fact, the
Jordan–Wigner transformation does not maintain the invariance of the boundary condition.
We show that the Hubbard model with a periodic boundary condition is exactly equal to
the coupledXY model with a special boundary condition.

The organization of this paper is as follows. We recall the Yang–Baxter relation for
the Hubbard model and the parametrization of theR-matrix in section 2. In section 3, we
investigate special cases of the model by using the algebraic Bethe ansatz method. Because
there are two kinds of creation operators with spin-up (or spin-down), such asT21 and
T43 (T21 andT43), the general multiparticle states become very complicated. However, the
special solution gives an insight into the general structure of the eigenvalue. In section 4
we will apply an analytic Bethe ansatz method to the Hubbard model. In our approach,
the analytic property of the eigenvalue of the transfer matrix, together with the asymptotic
behaviour, determines almost all the unknown functions. The discussion is different from
the standard analytic Bethe ansatz method, since there is no crossing symmetry, which
played an important role in the standard method [9–12]. In section 5, we will apply the
analytic Bethe ansatz method developed in section 4 to the coupledXY model with a twisted
boundary condition. Under a special choice, it recovers the results of the Hubbard model
at the level of the Bethe ansatz equations and the eigenvalue. In section 6 we show that the
Hubbard model with a periodic boundary condition is equal to the coupledXY model with
a special boundary condition by using the Jordan–Wigner transformation. Some discussions
are given in section 7.

2. The Hubbard model and the super-Yang–Baxter relation

In this section we recall the definition of the SYB relation for the Hubbard model and some
useful functional relations. We follow the notation of [5]. The Hamiltonian of the Hubbard
model is

HHu = −
L∑

m=1,s=↑,↓

(
a+

m+1,sam,s + a+
m,sam+1,s

) + U

L∑
m=1

(nm↑ − 1
2)(nm↓ − 1

2) (1)

wherea+
m,s (am,s) stands for themth site electron creation (annihilation) operator with spins.

The super-Yang–Baxter relation [5] is

R(µ, ν) [Lm(µ) ⊗s Lm(ν)] = [Lm(ν) ⊗s Lm(µ)] R(µ, ν). (2)

The super tensor product is defined by

[A ⊗s B]iajb = Ai
jB

a
b (−1)[p(i)+p(j)]p(a) (3)
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wherep(1) = p(4) = 0, p(2) = p(3) = 1 are the parities. For the Hubbard model the
L-operator takes the form

Lm(µ) =


−eh(µ)fm↑fm↓ fm↑a↓ iam↑fm↓ iam↑am↓eh(µ)

−ifm↑a+
m↓ fm↑gm↓e−h(µ) am↑a+

m↓e−h(µ) iam↑gm↓
a+

m↑fm↓ a+
m↑am↓e−h(µ) gm↑fm↓e−h(µ) gm↑am↓

−ia+
m↑a+

m↓eh(µ) a+
m↑gm↓ igm↑a+

m↓ −gm↑gm↓eh(µ)

 (4)

whereµ is the spectrum parameter, and the functionsfms andgms are

fms = w4(µ) − w3(µ) − {w4(µ) − w3(µ) − i[w4(µ)) + w3(µ)]}nms

gms = w4(µ) + w3(µ) − {w4(µ) + w3(µ) − i[w4(µ) − w3(µ)]}nms

α(µ) = w4(µ) + w3(µ) = sin(µ + π/4)

γ (µ) = w4(µ) − w3(µ) = sin(µ − π/4)

sinh(2h(µ)) = − 1
4U cos(2µ).

(5)

The gradedR-matrix reads



ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ρ2 0 0 iρ9 0 0 0 0 0 0 0 0 0 0 0

0 0 ρ2 0 0 0 0 0 iρ9 0 0 0 0 0 0 0

0 0 0 ρ3 0 0
ρ6

i
0 0 iρ6 0 0 ρ8 0 0 0

0
ρ10

i
0 0 ρ2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ρ4 0 0 0 0 0 0 0 0 0 0

0 0 0 iρ6 0 0 ρ5 0 0 ρ7 0 0
ρ6

i
0 0 0

0 0 0 0 0 0 0 ρ2 0 0 0 0 0
ρ10

i
0 0

0 0
ρ10

i
0 0 0 0 0 ρ2 0 0 0 0 0 0 0

0 0 0
ρ6

i
0 0 ρ7 0 0 ρ5 0 0 iρ6 0 0 0

0 0 0 0 0 0 0 0 0 0 ρ4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ρ2 0 0
ρ10

i
0

0 0 0 ρ8 0 0 iρ6 0 0
ρ6

i
0 0 ρ3 0 0 0

0 0 0 0 0 0 0 iρ9 0 0 0 0 0 ρ2 0 0

0 0 0 0 0 0 0 0 0 0 0 iρ9 0 0 ρ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1


(6)
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where all functions are defined by

ρ1(µ, ν) = elα(µ)α(ν) + e−lγ (µ)γ (ν)

ρ4(µ, ν) = elγ (µ)γ (ν) + e−lα(µ)α(ν)

ρ9(µ, ν) = −elα(µ)γ (ν) + e−lγ (µ)α(ν)

ρ10(µ, ν) = elγ (µ)α(ν) − e−lα(µ)γ (ν)

ρ3(µ, ν) = elα(µ)α(ν) − e−lγ (µ)γ (ν)

α2(µ) − γ 2(ν)

ρ5(µ, ν) = −elγ (µ)γ (ν) + e−lα(µ)α(ν)

α2(µ) − γ 2(ν)

ρ6(µ, ν) = e−h[elα(µ)γ (µ) − e−lα(ν)γ (ν)]

α2(µ) − γ 2(ν)

ρ7(µ, ν) = ρ4(µ, ν) − ρ5(µ, ν)

ρ8(µ, ν) = ρ1(µ, ν) − ρ3(µ, ν)

l = h(µ) − h(ν)

h = h(µ) + h(ν) .

(7)

Due to the super-Yang–Baxter relation, one can define the monodromy matrix

T (µ) = LL(µ) · · ·L2(µ)L1(µ) (8)

which still satisfies the super-Yang–Baxter relation

R(µ, ν) [T (µ) ⊗s T (ν)] = [T (ν) ⊗s T (µ)] R(µ, ν). (9)

The super-Yang–Baxter relation leads to the existence of the commutative family of transfer
matricestH (µ) = strT (µ) with infinitely many different values ofµ. Thus, the Hubbard
model is integrable. The infinite number of conserved quantities can be derived from the
transfer matrixtH (µ). The derivation of log[tH (µ)] at µ = π/4 gives the Hamiltonian of
the Hubbard model with a periodic boundary condition. Before ending this section, we list
some useful functional relations which will be used in the following sections:

1 = ρ1ρ4 + ρ9ρ10

2 = ρ1ρ5 + ρ3ρ4

1 = ρ3ρ5 − (ρ6)
2

ρ10 = ρ6(e
hα(µ)α(ν) + e−hγ (µ)γ (ν))

ρ9 = ρ6(e
−hα(µ)α(ν) + ehγ (µ)γ (ν)) .

(10)

3. An algebraic analysis of the eigenvalue

In this section, we will discuss the solution of the Hubbard model in some special cases by
using the algebraic Bethe ansatz method. For the general multiparticle states, it becomes
very difficult even if there are two electrons with opposite spins.
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Taking the special elements of the super-Yang–Baxter relation, one can obtain the
following useful relations:

T44(µ)T43(ν) = R44
44(ν, µ)

R43
34(ν, µ)

T43(ν)T44(µ) − R34
34(ν, µ)

R43
34(ν, µ)

T43(µ)T44(ν) (11)

T33(µ)T43(ν) = −R33
33(µ, ν)

R43
34(µ, ν)

T43(ν)T33(µ) + R43
43(µ, ν)

R43
34(µ, ν)

T43(µ)T33(ν) (12)

T22(µ)T43(ν) = −
(R32

23(µ, ν)

R42
24(µ, ν)

− R41
23(µ, ν)R32

14(µ, ν)

R42
24(µ, ν)R41

14(µ, ν)

)
T43(ν)T22(µ)

+
(R14

23(µ, ν)

R42
24(µ, ν)

− R41
23(µ, ν)R14

14(µ, ν)

R42
24(µ, ν)R41

14(µ, ν)

)
T41(ν)T24(µ)

−
(R23

23(µ, ν)

R42
24(µ, ν)

− R41
23(µ, ν)R23

14(µ, ν)

R42
24(µ, ν)R41

14(µ, ν)

)
T42(ν)T23(µ)

+R41
23(µ, ν)R42

42(µ, ν)

R42
24(µ, ν)R41

14(µ, ν)
T41(µ)T24(ν) + R41

23(µ, ν)

R41
14(µ, ν)

T21(µ)T44(ν)

+R42
42(µ, ν)

R42
24(µ, ν)

T42(µ)T23(ν) (13)

T11(µ)T43(ν) = R31
13(µ, ν)

R41
14(µ, ν)

T43(ν)T11(µ) + R13
13(µ, ν)

R41
14(µ, ν)

T41(ν)T13(µ)

+R41
23(µ, ν)

R41
14(µ, ν)

T21(µ)T33(ν) + R41
32(µ, ν)

R41
14(µ, ν)

T31(µ)T23(ν)

−R41
41(µ, ν)

R41
14(µ, ν)

T41(µ)T13(ν). (14)

For the Hubbard model the Hilbert space consists of four states: a double occupied state
|↑↓〉, a spin-up state|↑〉, a spin-down state|↓〉 and an unoccupied state|0〉. We denote
them by|1〉, |2〉, |3〉 and |4〉, respectively. It is convenient to introduce the reference state

|vac〉 = |4〉1 ⊗s · · · ⊗s |4〉L. (15)

Using the explicit expression for theL-operator, one can find that the monodromy matrix
acting on the reference state takes the form

T (µ)|vac〉 =


A1(µ) 0 0 0

T21(µ) A2(µ) 0 0

T31(µ) 0 A3(µ) 0

T41(µ) T42(µ) T43(µ) A4(µ)

 |vac〉 (16)

where

A4(µ) = [−α2(µ)eh(µ)]L

A2(µ) = A3(µ) = [α(µ)γ (µ)e−h(µ)]L

A1(µ) = [−γ 2(µ)eh(µ)]L.
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Unlike the case where the nested Bethe ansatz method is applicable, the operatorT21

is related to the operatorT43, creating an electron with spin-down. Generally, the relation
is very complicated. When they act on the reference state, however, the situation becomes
simple. An algebraic calculation shows that

T21(µ̃)|vac〉 = (−1)Lγ 2L−1(µ̃)e(L−1)h(µ̃)

γ L−1α(µ)Le−(L−1)h(µ)
T43(µ)|rac〉 (17)

whereµ̃ is defined by

e−2h(µ̃) α(µ̃)

γ (µ̃)
= e2h(µ) α(µ)

γ (µ)
. (18)

Furthermore, one can show that

T21(µ̃)T43(µ1) · · · T43(µn)|vac〉 ∝ T43(µ)T43(µ1) · · · T43(µn)|vac〉 .

It is worth noting that this relation is valid only for the reference state; when acting on the
other states, it will be invalid. There is a similar relation betweenT31 andT42. Due to this
relation, we can construct the special states for all spin-up (spin-down) withT43 (T42):

|9N 〉 = T43(µ1) · · · T43(µN)|vac〉.
Using the commutative relations, we can find

tH (µ)|9N 〉 = 3(µ)|9N 〉 + unwanted terms.

where

3(µ) = A4(µ)

N∏
j=1

ρ1(µj , µ)

iρ9(µj , µ)
− A3(µ)

N∏
j=1

−ρ4(µ, µj )

iρ9(µ, µj )
− A2(µ)

N∏
j=1

−iρ10(µ, µj )

ρ1(µ, µj ) − ρ3(µ, µj )

+A1(µ)

N∏
j=1

−iρ10(µ, µj )

ρ1(µ, µj ) − ρ3(µ, µj )
. (19)

The vanishing of the unwanted terms gives the Bethe ansatz equation[
−e2h(µj )

α(µj )

γ (µj )

]L

= 1. (20)

Thus, the states|9N 〉 are really the eigenstates of the transfer matrixt (µ) if the spectrum
parameters are appropriately chosen to satisfy the Bethe ansatz equation (20).

The general states withN spin-down andN −M spin-up are given by sums of products
of the combination ofT21, T31, andT4j , j = 1, 2, 3 acting on the reference state. Let us
consider a special caseN − M = M = 1. The general form is

|91,1〉 = {f1(µ1, µ2)T42(µ1)T43(µ2) + f2(µ1, µ2)T43(µ1)T42(µ2)

+ f3(µ1, µ2)T21(µ1)T31(µ2) + f4(µ1, µ2)T31(µ1)T21(µ2)

+ f5(µ1, µ2)T41(µ1) + f6(µ1, µ2)T41(µ2)} |vac〉. (21)

We can determine the all coefficientsfj by requiring the right-hand side of (21) to be the
eigenvector of the transfer matrix. The general solution is very complicated. Fortunately,
we can show by an explicit calculation that|91,1〉 is the eigenstate iff3 = f4 = 0 with
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appropriatef5 and f6. Using the super-Yang–Baxter relation, we find the eigenvalue for
the case whenf1 = −f2:

3(µ) = A4(µ)

2∏
j=1

ρ1(µj , µ)

iρ9(µj , µ)
+ A1(µ)

N∏
j=1

−iρ10(µ, µj )

ρ1(µ, µj ) − ρ3(µ, µj )

−A2(µ)

{
ρ4(µ, µ1)ρ10(µ, µ2)

ρ9(µ, µ1)[ρ1(µ, µ2) − ρ3(µ, µ2)]

+ ρ4(µ, µ2)ρ10(µ, µ1)

ρ9(µ, µ2)[ρ1(µ, µ1) − ρ3(µ, µ1)]

−
[

ρ10(µ, µ1)

ρ1(µ, µ1) − ρ3(µ, µ1)
+ ρ4(µ, µ1)

ρ9(µ, µ1)

]

×
[

ρ10(µ, µ2)

ρ1(µ, µ2) − ρ3(µ, µ2)
+ ρ4(µ, µ2)

ρ9(µ, µ2)

]}
. (22)

The vanishing of the unwanted terms gives the Bethe ansatz equation:[
2∏

j=1

−α(µj )

γ (µj )
e2h(µj )

]L

= 1. (23)

For the casef1 = f2 the eigenvalue and the Bethe ansatz equations are given by (19)
and (20), respectively. It is worth pointing out that these states considered here are not
complete. For example, if one considers the casef1 = f2 = 0, one can get similar results.

4. Analytic Bethe ansatz for the Hubbard model

In section 3, we applied the algebraic Bethe ansatz method to some eigenstates of the
Hubbard model. For general states, the previously straightforward calculation becomes very
complicated. In this section, however, we want to discuss an analytic Bethe ansatz method
for the same problem based on the hints given by the above results. We should generalize
the standard ABA [9–12] in which the crossing symmetry and asymptotic behaviour play a
key role. We cannot apply the same argument to the eigenvalue of the Hubbard model in
which there is no such crossing symmetry for theR-matrix.

Let us first investigate the special solutions and show how to generalize the method from
the viewpoint of the ABA. One may understand that the analytic property of the function
3(µ) leads to the Bethe ansatz equation (20). It is clear thatρ9(µ, µj ) = 0 is the simple
pole of 3(µ) (equation (19)). In order to keep the analytic property of the eigenvalue, the
residue at such a pole must be zero. The Bethe ansatz equation is quite simply the condition
of a vanishing residue. Similarly the vanishing residue at the poleρ1(µ, µj ) = ρ3(µ, µj )

gives the same Bethe ansatz equation. This property can be generalized to all kinds of states
with different particles. The eigenvalue function should be analytic and has only superficial
simple poles. The vanishing residues at such poles will give the Bethe ansatz equations.

Let us discuss the general eigenvalue of the Hubbard model. The special solutions
(19) and (22), together with some standard knowledge of algebraic Bethe ansatz, contain
enough information about the general one. It consists of four terms which are proportional
to Aj(µ), j = 1, 2, 3, 4, respectively. The terms involvingA1 andA4 are dependent only
on the total number of electrons. The other terms depend on both the total number of
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electronsN and the number of spin-up electronsM, as shown in section 3. Thus, the
general eigenvalue should be

3(µ) = A4(µ)

N∏
j=1

ρ1(µj , µ)

iρ9(µj , µ)
− A3(µ)

N∏
j=1

−ρ4(µ, µj )

iρ9(µj , µ)

M∏
m=1

g3(µ, λm)

−A2(µ)

N∏
j=1

−iρ10(µ, µj )

ρ1(µ, µj ) − ρ3(µ, µj )

M∏
m=1

g2(µ, λm)

+A1(µ)

N∏
j=1

−iρ10(µ, µj )

ρ1(µ, µj ) − ρ3(µ, µj )
(24)

whereg2 andg3 are unknown functions. Theµj andλm are free parameters.N is the total
number of electrons andM the number of spin-up electrons.

We now show how the analytic property of the eigenvalue restricts the unknown
functions. First,3(µ) has two sets of poles related to the parametersµj . One (case A)
is controlled by the null denominator of the first two terms on the right-hand side of (24).
The other (case B) is from the last two terms. For case A, the position of the poles is
determined by

e2h(µ) α(µ)

γ (µ)
= e2h(µj )

α(µj )

γ (µj )
. (25)

Due to theiπ -period of h(µ), we can getµ = µj in the region 06 µj 6 π . At these
poles, the functionsρ1(µ, µj ) − ρ3(µ, µj ) and ρ10(µ, µj ) also vanish; however, the ratio
is finite. So, the singularity at these poles is dominated by the terms on the first line. The
null residue requires that[

−e2h(µj )
α(µj )

γ (µj )

]L

=
M∏

m=1

g3(µj , λm). (26)

For case B, the position of the poles satisfies

0 = [e−h(µj )+h(µ)γ (µj )α(µj ) − eh(µj )−h(µ)γ (µ)α(µ)]

× [eh(µ)+h(µj )γ (µ)α(µj ) − e−h(µ)−h(µj )α(µ)γ (µj )]. (27)

The first part is equal toρ9(µ, µj ) = 0. It is not a pole due toρ10(µ, µj ) = 0 at this point.
The real pole is located at̃µj :

e−2h(µ̃j )
α(µ̃j )

γ (µ̃j )
= e2h(µj )

α(µj )

γ (µj )
. (28)

The vanishing residue atµ = µ̃j gives[
−e2h(µ̃j )

γ (µ̃j )

α(µ̃j )

]L

=
N∏

m=1

g2(µ̃j , λm). (29)

In order to keep the analytic property of the eigenvalue, equations (26) and (28) must be
satisfied simultaneously, which leads to the following functional relation:

M∏
m=1

g3(µj , λm) =
M∏

m=1

g−1
2 (µ̃j , λm). (30)
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We find it convenient to introduce the new variablesk andkj :

eik = −e2h(µ) α(µ)

γ (µ)
eikj = −e2h(µj )

α(µj )

γ (µj )
. (31)

In terms of the new variables the relation between the quantities with and without tildes is
very simple:

sin(k̃j ) = sin(kj ) + 1
2iU. (32)

At this stage, we need to know some properties of the unknown functionsgi which are
already hidden in the special solution withN = 2, M = 1. In terms ofkj , equation (22)
becomes

3(µ) = (−α2(µ)eh(µ)
)L

3(k)

3(k) =
2∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

− e−ikL
N∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

× 2i sin(k) − i sin(K1) − i sin(k2) − U/2

2i sin(k) − i sin(k1) − i sin(k2) + U/2

− e−ikL
2∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2

× 2i sin(k) − i sin(K1) − i sin(k2) + 3U/2

2i sin(k) − i sin(k1) − i sin(k2) + U/2

− e−i(k+k̃)L
2∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2
.

(33)

It is clear that the eigenvalue has another simple pole 2 sin(k) = sin(k1) + sin(k2) + 1
2iU .

The Bethe ansatz equation ensures the analytic property of the eigenvalue. This strongly
suggests that the undetermined functions have simple poles of the form sin(k) = constant.
On the other hand, the analytic property of the eigenvalue requires thatg2 andg3 must have
the same poles. Therefore, the general form ofg2(µ, λ) andg3(µ, λ) is

g2(µ, λ) = P2(k, λ)

i sin(k) − λ + U/4
g3(µ, λ) = P3(k, λ)

i sin(k) − λ + U/4
(34)

where the functionP2(k, λ) and P3(k, λ) are integral functions. The general form is
Pr(k, λ) = ∑

n=0 ar
n(k)(λ)n. Substituting this in (30), we find that

a2
0(k) = [i sin(k) − U/4]a2

1(k)

a3
0(k) = [i sin(k) + 3U/4]a3

1(k)

a2
n(k) = a2

n(k) = 0 n > 2

a3
1(k) = [a2

1(k̂)]−1

(35)

wherek̂ is defined by sin(k̂) = sin(k)− iU/2. Moreover, the functiona2
1(k) is analytic and

has no zero in the complex plane. It will be fixed by the asymptotic behaviour of the transfer
matrix. Let us assume thatU 6 0 andµ −→ −i∞: then the eigenvalue approaches

3(µ) −→ e3L∞{[a2
1(∞)]M + [a2

1(∞)]−M}. (36)
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Comparing this with the asymptotic behaviour oft (µ) −→ e3L∞, we obtain the result that
a2

1(∞) is a no-zero constant. Based upon the knowledge of analysis such as Liouville’s
theorem on integral functions, we arrive ata2

1(k) being a no-zero constant. A special form
of 3(µ) underN = M = 1 fixes this constant to be unity. Finally, we arrive at the final
results

3(µ) = (−α2(µ)eh(µ)
)L

3(k)

3(k) =
N∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

− e−ikL
N∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

M∏
m=1

i sin(k) − λm − U/4

i sin(k) − λm + U/4

− e−ikL
N∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2

M∏
m=1

i sin(k) − λm + 3U/4

i sin(k) − λm + U/4

− e−i(k+k̃)L
N∏

j=1

2i cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2
. (37)

The parameters satisfy the following Bethe ansatz equations:

eikj L =
M∏

m=1

i sin(kj ) − λm − U/4

i sin(kj ) − λm + U/4

−
M∏

m=1

λr − λm − U/2

λr − λm + U/2
=

N∏
j=1

i sin(kj ) − λr + U/4

i sin(kj ) − λm − U/4
.

(38)

Differentiating log(3(µ)) at µ = π/4 will give the energy of the Hubbard model, which
coincides with that given in [1]:

E = UL

4
− NU

2
−

N∑
j=1

cos(kj ). (39)

In general, the higher derivatives of log3(µ) at µ = π/4 give the eigenvalues of the
conserved quantities at higher orders. We have checked that equations (37) and (38) with
N = 2, M = 1 coincide with the result obtained in section 3.

5. The ABA for the coupled XY model

In this section we investigate the eigenvalue of the transfer matrix of the coupledXY model
with a twisted boundary condition.

The L-operator related to the coupledXY model [2, 3] is

Lm(µ) =


eh(µ)p+

mq+
m p+

mτ−
m σ−

m q+
m eh(µ)σ−

m τ−
m

p+
mτ+

m e−h(µ)p+
mq−

m e−h(µ)σ−
m τ+

m σ−
m q−

m

σ+
m q+

m e−h(µ)σ+
m τ−

m e−h(µ)p−
mq+

m p−
mτ−

m

eh(µ)σ+
m τ+

m σ+
m q−

m p−
mτ+

m eh(µ)p−
mq−

m

 (40)
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whereσa
m andτ a

m are two independent Pauli matrices located ath themth site. The operators
p± andq± read

p±
m = w4(µ) ± w3(µ)σ z

m

q±
m = w4(µ) ± w3(µ)τ z

m .
(41)

In [2, 3] it was shown that thisL-operator satisfies the Yang–Baxter equation:

R(µ, ν)Lm(µ) ⊗ Lm(ν) = Lm(ν) ⊗ Lm(µ)R(µ, ν). (42)

The R-matrix is

ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ρ2 0 0 ρ9 0 0 0 0 0 0 0 0 0 0 0

0 0 ρ2 0 0 0 0 0 ρ9 0 0 0 0 0 0 0

0 0 0 ρ3 0 0 ρ6 0 0 ρ6 0 0 −ρ8 0 0 0

0 ρ10 0 0 ρ2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ρ6 0 0 0 0 0 0 0 0 0 0

0 0 0 ρ6 0 0 ρ5 0 0 −ρ7 0 0 ρ6 0 0 0

0 0 0 0 0 0 0 ρ2 0 0 0 0 0 ρ10 0 0

0 0 ρ10 0 0 0 0 0 ρ2 0 0 0 0 0 0 0

0 0 0 ρ6 0 0 −ρ7 0 0 ρ5 0 0 ρ6 0 0 0

0 0 0 0 0 0 0 0 0 0 ρ4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ρ2 0 0 ρ10 0

0 0 0 −ρ8 0 0 ρ6 0 0 ρ6 0 0 ρ3 0 0 0

0 0 0 0 0 0 0 ρ9 0 0 0 0 0 ρ2 0 0

0 0 0 0 0 0 0 0 0 0 0 ρ9 0 0 ρ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1



.

(43)

This Yang–Baxter relation ensures the monodromy matrixT (µ) = LL(µ) ⊗ · · · ⊗ L1(µ)

satisfying the Yang–Baxter relation. In order to simplify our calculation, we choose the
ferromagnetic state (all states spin-down) as the reference state. From the explicit expression
of the L-operator, we have

T (µ)|vac〉 =


A1(µ) 0 0 0

T21(µ) A2(µ) 0 0

T31(µ) 0 A3(µ) 0

T41(µ) T42(µ) T43(µ) A4(µ)

 |vac〉 (44)

where

A4(µ) = [α2(µ)eh(µ)]L

A2(µ) = A3(µ) = [α(µ)γ (µ)e−h(µ)]L

A1(µ) = [γ 2(µ)eh(µ)]L.

(45)

Similarly, one can define the transfer matrixt (µ) = stT (µ) and find the eigenvalue of it,
which will be related to the periodic boundary condition. The eigenvalue of the diagonal-of-
diagonal transfer matrix of this model with a periodic condition was found by Bariev [13]
in terms of the coordinate Bethe ansatz method.
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In order to consider the twisted boundary condition, we introduce the generalized transfer
matrix

tg(µ) = T11(µ)aiβ1 + T22(µ)aiβ2 + T33(µ)aiβ3 + T44(µ)aiβ4 (46)

where

aiβ4 = a−iβ1 = eaσ Nσ +aτ Nτ +a0

aiβ3 = a−iβ2 = ecσ Nσ +cτ Nτ +c0
(47)

whereas andcs are free parameters,Nσ (Nτ ) the total number ofσ -spin (τ -spin). Now, we
want to find the eigenvalue oftg(µ) by means of the analytic Bethe ansatz method. First,
by using the algebraic Bethe ansatz method, we find the eigenvalue of the states withN

τ -spin (orσ -spin) flipping from the reference state. After a long but direct calculation, we
arrive at

3N(µ) = easN+a0[eh(µ)α2(µ)]L
N∏

j=1

ρ1(µj , µ)

ρ9(µj , µ)
+ ecsN+c0[e−h(µ)α(µ)γ (µ)]L

N∏
j=1

ρ4(µ, µj )

ρ9(µ, µj )

+ e−csN−c0[e−h(µ)α(µ)γ (µ)]L
N∏

j=1

ρ10(µ, µj )

ρ1(µj , µ) − ρ3(µ, µj )

+ e−asN−a0[eh(µ)γ 2(µ)]L
N∏

j=1

ρ1(µ, µj )

ρ3(µ, µj ) − ρ1(µ, µj )
(48)

wheres = σ (s = τ ) for all σ (τ ) spin-up states, the parametersµj are determined by[
e2h(µj )

α(µj )

γ (µj )

]
= (−1)N+1e(cs−as )N+c0−a0. (49)

From this expression and the similar arguments in section 4, we can write the general form
of the eigenvalue as

3(µ) = ea0+aσ M+aτ (N−M)[eh(µ)α2(µ)]L
N∏

j=1

ρ1(µj , µ)

ρ9(µj , µ)
+ ec0+cσ M+cτ (N−M)[e−h(µ)α(µ)γ (µ)]L

×
N∏

j=1

ρ4(µ, µj )

ρ9(µ, µj )

M∏
m=1

g3(µ, λm) + e−c0−cσ M−cτ (N−M)[e−h(µ)α(µ)γ (µ)]L

×
N∏

j=1

ρ10(µ, µj )

ρ1(µj , µ) − ρ3(µ, µj )

M∏
m=1

g2(µ, λm)

+ e−a0−aσ M−aτ (N−M)[eh(µ)γ 2(µ)]L
N∏

j=1

ρ1(µ, µj )

ρ3(µ, µj ) − ρ1(µ, µj )
. (50)

Second, consider the singularity of3(µ) at the poles related to the parametersµj . As was
done in the Hubbard model, the null residue condition requires the following relation:

M∏
m=1

g3(µ, λm) =
M∏

m=1

g−1
2 (µ̃, λm). (51)
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This equation is same as that in the Hubbard model (equation (34)). So, we can use the
results of the Hubbard model:

g2(µ, λ) = c
i sin(k) − λ − U/4

i sin(k) − λ + U/4

g3(µ, λ) = 1

c

i sin(k) − λ − U/4

i sin(k) − λ + U/4
.

(52)

Here we have used the same definition ofk as that used in the Hubbard model. One should
note that in this case, the constantc in the above equation is not 1 as in the Hubbard model.
TakingN = M = 1 in (50) and comparing with (48), one can getc = −1. Thus, we obtain
the final results

3(µ) = [eh(µ)α2(µ)]L3(k)

3(k) = (−1)Nea0+aσ M+aτ (N−M)
N∏

j=1

2 cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

+ ec0+cσ M+cτ (N−M)
N∏

j=1

2 cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj )

× (−1)L+Me−ikL
M∏

m=1

i sin(k) − λm − U/4

i sin(k) − λm + U/4

+ e−c0−cσ M−cτ (N−M)
N∏

j=1

2 cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2

× (−1)L+M+Ne−ikL
M∏

m=1

i sin(k) − λm + 3U/4

i sin(k) − λm + U/4

+ e−a0−aσ M−aτ (N−M)e−i(k+k̃)L
N∏

j=1

2 cos((k + kj )/2) cos((k̃ + kj )/2)

i sin(k) − i sin(kj ) + U/2
.

(53)

The Bethe ansatz equations are

(−1)M+N+1+Leikj L = ec0−a0+(cσ −aσ )M+(cτ −aτ )(N−M)
M∏

m=1

i sin(kj ) − λm − U/4

i sin(kj ) − λm + U/4

N∏
j=1

i sin(kj ) − λr + U/4

i sin(kj ) − λr − U/4
= (−1)N+1e2(c0+cσ M+cτ (N−M))

M∏
m=1

λr − λm − U/2

λr − λm + U/2
.

(54)

These are the exact solution of the coupledXY model with twisted boundary condition.
It is interesting that it recovers the results of the Hubbard model whenaσ = aτ = cσ =
−cτ = −iπ/2 anda0 = iLπ, c0 = iπ . This gives a precise relation between the two
models and make it clear why the extra factor appears in the Bethe ansatz equations of Lieb
and Wu [1] and of Shastry [8]. Whenas = cs = 0, s = σ, τ, 0, they reduce to the periodic
case. The correspondence between our notation and that in [8] is 2i sin(kj ) = z−1

j − zj .

6. The twisted boundary condition

In this section, we will discuss the boundary condition related to our generalized transfer
matrix (46) and prove the equality of the periodic Hubbard model to the twisted coupled
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XY model in terms of the transfer matrices and the Hamiltonians.
First, we derive the Hamiltonian related to thetg, equation (46), by using the standard

method. After a straightforward calculation, we arrive at

H =
L−1∑
m=1

(σ+
m+1a

−
m + σ+

m σ−
m+1 + τ+

m+1τ
−
m + τ+

m τ−
m+1) + U

4

L∑
m=1

σ z
mτ z

m

+ exp{−ε[a0 + c0 + (aσ + cσ )Nσ + (aτ + cτ )Nτ ]}σ+
N σ−

1

+ exp{ε[a0 + c0 + (aσ + cσ )Nσ + (aτ + cτ )Nτ ]}σ−
N σ+

1

+ exp{−ε′[a0 − c0 + (aσ − cσ )Nσ + (aτ − cτ )Nτ ]}τ+
N τ−

1

+ exp{ε′[a0 − c0 + (aσ − cσ )Nσ + (aτ − cτ )Nτ ]}τ−
N τ+

1 (55)

where

ε =
{

1 τ spin up

−1 τ spin down
ε′ =

{
1 σ spin up

−1 σ spin down.
(56)

This means that the Hamiltonian (55) gives the coupledXY model discussed in section 5
with a twisted boundary:

σ±
L+1 = e−ε(aσ +cσ ) exp{±ε[a0 + c0 + (aσ + cσ )Nσ + (aτ + cτ )Nτ ]}σ±

1

τ±
L+1 = e−ε′(aτ −cτ ) exp{±ε[a0 − c0 + (aσ − cσ )Nσ + (aτ − cτ )Nτ ]}τ±

1 .
(57)

Comparing the Bethe ansatz equations (37), (38), (53) and (54), we find that they are same
if the free parameters are fixed:

aσ = aτ = cσ = −cτ = − 1
2iπ a0 = iLπ c0 = iπ. (58)

Let us prove the connection (58) by using the Jordan–Wigner transformation on transfer
matrix. The Jordan–Wigner transformation on operators is defined by(

σ+
m

σ−
m

)
= V 2

m↑

(
a+

m↑
am↑

)
=

(
v2

m↑ 0

0 v−2
m↑

) (
a+

m↑
am↑

)
(59)

(
τ+
m

τ−
m↑

)
= V 2

m↓

(
a+

m↓
am↓

)

=
(

v2
m↑u2

m↑r2
mv2

m↓ 0

0 (vm↑um↑rmvm↓)−2

) (
a+

m↓
am↓

)
(60)

with the definitions

vms = exp

{
i
π

2

m−1∑
k=1

(nks − 1)

}

ums = exp
{
i
π

2
(nks − 1)

}
rm = exp

{
i
π

2

L∑
k=m+1

(nk↑ − 1)

}
.

(61)

Under the transformation, theL-operator becomes [5]:

Lm(µ) = Vm+1Lm(µ)V −1
m (62)
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where

Vm+1 = Vm(Um↑ ⊗ Um↑)

= Vm↑Um↑ ⊗ Vm↓Um↓

Um,s = dia(um,s, u
−1
m,s).

(63)

Substituting equation (62) intH (µ), we obtain

tH (µ) = T11(µ) − T22(µ) − T33(µ) + T44(µ)

= eβ1T11(µ) + eβ2T22(µ) + eβ3T33(µ) + eβ4T44(µ) (64)

where

eβ1 = exp

{
−i

π

4

L∑
j=1

(σ z
j + τ z

j − 2)

}
= e−β4

eβ2 = exp

{
−i

π

4

L∑
j=1

(σ z
j − τ z

j )

}
= e−β3. (65)

This is exactly equal to equation (46) with the condition (58). This completes our proof.
It is worth pointing out that Wadatiet al [5] also applied the Jordan–Wigner

transformation to theL-operator and theR-matrix. In the derivation of the Hamiltonian
of the Hubbard model, they impose a periodic boundary condition. However, they did not
consider the relation between the boundaries.

In the rest of this section, we give another independent proof in terms of the
Hamiltonians. The periodic Hubbard model is

H = −
L−1∑

m=1,s

(a+
m+1,sam,s + a+

m,sam+1,s) +
L∑

m=1,s

(nm↑ − 1
2)(nm↓ − 1

2)

−
∑

s=↑,↓
(a+

1,saL,s + a+
L,sa1,s) (66)

where we have used the periodic condition

a+
L+1,s = a+

1,s aL+1,s = a1,s . (67)

Using the Jordan–Wigner transformation, we can obtain

a+
m+1,↑am,↑ + a+

m,↑am+1,↑ = −(σ+
m+1σ

−
m + σ+

m σ−
m+1)

a+
m+1,↓am,↓ + a+

m,↓am+1,↓ = −(τ+
m+1τ

−
m + τ+

m τ−
m+1)

a+
1,↑aL,↑ + a+

L,↑a1,↑ = exp

{
iπ

2

L∑
j=1

(σ z
j − 1

2)

}
(σ−

L σ+
1 + σ+

L σ−
1 )

a+
1,↓aL,↓ + a+

L,↓a1,↓ = exp

{
iπ

2

L∑
j=1

(τ z
j − 1

2)

}
(τ−

L τ+
1 + τ+

L τ−
1 ).

(68)
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The Hamiltonian becomes

H =
L−1∑
m=1

(σ+
m+1σ

−
m + σ−

m+1σ
+
m ) − exp

{
iπ

2

L∑
j=1

(σ z
j − 1

2)

}
(σ−

L σ+
1 + σ+

L σ−
1 )

+
L−1∑
m=1

(τ+
m+1τ

−
m + τ−

m+1τ
+
m ) − exp

{
iπ

2

L∑
j=1

(τ z
j − 1

2)

}
(τ−

L τ+
1 + τ+

L τ−
1 )

+U

4

L∑
m=1

σ z
mτ z

m. (69)

Therefore, under the Jordan–Wigner transformation, the Hamiltonian of the Hubbard model
becomes one of the coupledXY model with twisted boundary condition

σ±
L+1 = exp

{
± iπ

2

L∑
j=1

(σ z
j − 1)

}
σ±

1

τ±
L+1 = exp

{
± iπ

2

L∑
j=1

(τ z
j − 1)

}
τ±

1

(70)

which is coincident with equations (57) and (58).

7. Concluding remarks

In this paper we have found the eigenvalues of the transfer matrices of the Hubbard model
and the coupledXY model with a twisted boundary condition by using the analytic Bethe
ansatz method. In fact, the matrix elements of the elements ofL-operator, equations (4)
and (40), can be interpreted as the Boltzmann weights in 2D statistical systems. The
eigenvalues (37) and (53) are equivalent to the partition functions of the related 2D statistical
models. The eigenvalues of the conserved quantities of the Hubbard model can be obtained
exactly by taking the logarithmic derivative of the eigenvalues of the transfer matrix.

We have also shown how the 1D Hubbard model and the coupledXY model are
equal at the levels of the Hamiltonian and the transfer matrix by using the Jordan–Wigner
transformation. We recall that the power expansion of log(tg(µ)) in terms ofµ will give the
infinite number of conserved quantities explicitly. At this level we claim that the coupled
XY model with a twisted boundary condition is integrable.

It is worth pointing out that here we consider only a set of special boundary conditions.
It is not difficult to generalize to other kinds of twisted boundary conditions. For the open
boundary, one should consider the solution of the reflection equations. This will be related
to the surface critical behaviour of the system.

The analytic Bethe ansatz discussed in the present paper can be applied to Shastry’s
inhomogeneous coupled six-vertex model. The partition functions and related Bethe ansatz
were found. The results will be given in another paper.
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Note added. After finishing this paper, we were informed by Professor Wadati that Ramos and Martin [14] had
found the eigenvalue of the Hubbard model by using the algebraic Bethe ansatz method, which partly recovers
our results from a different approach. In [14], they also notice the effect of the boundary condition, but they do
not discuss it in detail.
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